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ABSTRACT: Many regions in Africa and the Middle East are vulnerable to drought and to water 
and food insecurity, motivating agency efforts such as the U.S. Agency for International Develop-
ment’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of 
drought events in the region. Each year these warnings guide life-saving assistance that reaches 
millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and 
analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS 
NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate 
initial conditions, as produced by an offline land modeling system through the application and/or 
assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), 
and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art 
ocean–land–atmosphere forecast system. The land modeling framework used is the Land Informa-
tion System (LIS), which employs a suite of land surface models, allowing multimodel ensembles 
and multiple data assimilation strategies to better estimate land surface conditions. An evalua-
tion of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought 
events, and it has improved skill over benchmark-type hindcasts. The system also benefits from 
strong collaboration with end-user partners in Africa and the Middle East, who provide insights 
on strategies to formulate and communicate early warning indicators to water and food security 
communities. The additional lead time provided by this system will increase the speed, accuracy, 
and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.
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Many regions around the globe are susceptible to recurring drought conditions that can 
cause socioeconomic losses, environmental degradation, displacement, or loss of life. 
Failure to adequately prepare for and respond to droughts has increased the number of 

food-insecure people since 2015 (UN 2018). In drought-vulnerable parts of Africa and the Middle 
East, these events contribute to significant food and water insecurity, undermining political 
stability and advances made in poverty reduction (Vörösmarty et al. 2005). According to the 
global Emergency Events Database (CRED 2019), since 2015, Africa has experienced 21 droughts, 
affecting 50 million people. To support early warning efforts and mitigate adverse impacts of food 
and water insecurity, a recent National Aeronautics and Space Administration (NASA) supported 
effort, known as the Forecasting for Africa and the Middle East (FAME) project, partnered with 
U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network 
(FEWS NET; Verdin et al. 2005; Funk et al. 2019) and other agencies and universities to develop 
a hydrologic forecasting system. This new NASA hydrological forecast and analysis system 
(NHyFAS) makes use of NASA’s satellite, data assimilation, and modeling capabilities, as well as 
regional expertise from partners. Here we describe the development, evaluation, implementation, 
and transition from research to operations of this system. Examples are provided of the system’s 
application to drought forecasts in southern Africa and to forecasting flood risk in Kenya.

The NHyFAS hydrologic forecasting system has three novel attributes: (i) the application of 
advanced observational and reanalysis-based datasets; (ii) seasonal hydrological forecasts 
initialized with remotely sensed data; and (iii) a partnership with FEWS NET to facilitate the 
move to operations as well as into monitoring schemes for food, water, and energy security. 
NHyFAS also includes a flexible framework to support additional operational features, such 
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as different climate seasonal forecast datasets and even medium-range to subseasonal fore-
casts. To help with integration of NHyFAS outputs into operations, FEWS NET partners are 
being trained on the products and are providing feedback through collaborative discussions.

NASA has a long history of contributing to early warning systems (McNally et al. 2019a), 
beginning with the use of remotely sensed datasets, such as the normalized difference vegeta-
tion index (NDVI; e.g., Tucker and Sellers 1986; Anyamba and Tucker 2012), and more recently 
with the development of the FEWS NET Land Data Assimilation System (FLDAS; McNally 
et al. 2017). FLDAS combines observational precipitation with atmospheric reanalysis to drive 
advanced land surface models (LSMs) for both long-term and near-real-time monitoring of 
hydrological conditions contributing to drought. This accordingly provides FEWS NET with 
spatial and temporal estimates of drought indicators with relevance to water and food avail-
ability (e.g., through declined crop production), livestock, and livelihoods. FEWS NET has 
a high-priority demand for hydrologic monitoring and forecasting products to support food 
security outlooks (e.g., Funk et al. 2019; McNally et al. 2019a).

While routine hydrologic monitoring is a powerful tool for early warning, reliance on monitor-
ing alone limits the timeliness of early warning efforts. Past research has shown the potential for 
seasonal-scale hydrologic forecasts (e.g., Wood et al. 2002; Luo and Wood 2007, 2008; Sheffield 
et al. 2014; Shukla et al. 2014) to extend the lead time at which early warning of droughts and 
resulting food security events can be provided. Given this potential, FEWS NET has made hydro-
logic forecasts a high priority, leading to the development of the forecasting system described 
herein. This forecasting effort benefits from a close relationship between the NASA Global 
Modeling and Assimilation Office (GMAO) and the NASA Land Information System (LIS) team, 
the former providing state-of-the-art dynamical seasonal forecasts and the latter translating 
those forecasts into hydrologic forecasts with a state-of-the-art land surface modeling system.

For successful transition of research to operations, engagement with end-users and regional 
expertise are essential. For NHyFAS, FEWS NET’s regional experts in Africa and the Middle 
East are receiving guidance about the products to help facilitate their use in operational 
applications. Due to a paucity of in situ data to support system development and evaluation 
in these regions (e.g., Getirana et al. 2015; James et al. 2018), the close relationship with FEWS 
NET experts helps with verifying current local conditions when observations are not available. 
This can be particularly useful for identifying system accuracy in forecasting extreme events. 
In addition to facilitate uptake by FEWS NET monitoring experts, the inputs for the model 
were selected from those that are already in the FEWS NET data streams. An example of 
this is that NHyFAS is driven with the Climate Hazards Infrared Precipitation with Stations 
(CHIRPS; Funk et al. 2015) rainfall product, which is widely used for estimating precipitation 
over the FEWS NET regions. A number of studies have compared CHIRPS to stations and other 
satellite-based estimates, with CHIRPS performing favorably over many spatial and temporal 
domains (e.g., Funk et al. 2015; Jung et al. 2017; Dinku et al. 2018).

Importantly, the development of NHyFAS, described herein, entailed a significant amount 
of basic research given that the full suite of available data and analysis tools used in the 
system is relatively new and is not being utilized in current operational efforts. One of the 
key advancements provided by the new operational system is the ingestion, through data 
assimilation, of satellite data for improved hydrological-state initialization, which is critical 
for useful hydrological forecasts. Another advancement over existing systems in Africa is 
that NHyFAS supports a multimodel approach. Several studies have shown the added skill 
of multimodel ensembles over individual models, especially in terms of soil moisture (e.g., 
Guo et al. 2007; Xia et al. 2014), streamflow (e.g., Sharma et al. 2019), and drought detection 
(e.g., Wang et al. 2009; Mo et al. 2011). This work presents a new multi-LSM seasonal forecast 
system that uses NASA’s models, satellite data, and tools and is set up specifically for con-
tinental Africa and the Middle East. Through data assimilation and a multimodel approach 
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we are able to provide a variety of forecasted hydrological variables, including soil moisture 
(SM), terrestrial water storage (TWS), streamflow, and drought indices for end-user partners 
such as the FEWS NET community.

The basis for providing skillful seasonal hydrologic forecasts
Seasonal forecasts have been produced and evaluated for different regions in Africa (e.g., 
Yuan et al. 2013), with various studies focusing on meteorological drought (e.g., Dutra et al. 
2013), agricultural drought (e.g., Shukla et al. 2014), crop yields (e.g., Sultan et al. 2010), and 
hydrological resources (e.g., Trambauer et al. 2015; Seibert et al. 2017). Current operational 
efforts that produce seasonal dynamical forecasts of temperature and precipitation include 
NOAA’s North American Multi-Model Ensemble (NMME; Kirtman et al. 2014). NASA SERVIR 
ClimateSERV downscaled NMME forecasts are provided for different continental (e.g., Africa) 
and oceanic (e.g., Indian Ocean) regions (https://climateserv.servirglobal.net; Flores Cordova et al. 
2012). Also, the Global Flood Awareness System (GloFAS; Emerton et al. 2018) provides routine, 
global 30-day and seasonal flood forecasts using land surface and calibrated hydrological 
routing models.

More specific to Africa, operational drought forecasts include application of subseasonal 
to seasonal meteorological forecasts via NOAA (Thiaw and Kumar 2015), FEWS NET, and 
formerly the Drought Early Warning and Forecasting in Africa (i.e., DEWFORA; Dutra et al. 
2014a,b), which provided forecasted meteorological drought estimates [i.e., standardized 
precipitation index (SPI)]. For hydrological forecasts, Yuan et al. (2013) and Sheffield et al. 
(2014) developed an Africa-wide hydrological seasonal forecast system as part of the Princeton 
University African Flood and Drought Monitor (AFDM; Sheffield et al. 2014), which in the past 
was driven using NOAA’s Climate Forecast System, version 2 (CFSv2; Saha et al. 2014) but is 
currently using the Canadian Centre for Climate Modeling and Analysis Coupled Climate 
Model (Merryfield et al. 2013). However, there still remains a lack of operationally based, 
drought-focused seasonal forecast systems for the African continent and the Middle East that 
routinely support food and water security (Wolski et al. 2017).

The ability to forecast extreme hydrological events, such as drought, is naturally constrained 
by the limited skill of general circulation model (GCM) forecasts, especially of precipitation at 
seasonal time scales (e.g., Li et al. 2008; Lavers et al. 2009; Narapusetty et al. 2018). Errors in 
such forecasts can be mitigated somewhat through the use of multimodel forecast ensembles 
(e.g., Krishnamurti et al. 2000), and this can translate to improved drought or flood potential 
forecast skill (e.g., Shukla et al. 2019). There are, however, fundamental limits to the forecast 
skill that can be attained (NRC 2010).

Seasonal hydrological forecasts are also influenced by initial hydrological conditions 
(IHCs), which relate to model states such as soil moisture (e.g., Maurer and Lettenmaier 2003; 
Shukla and Lettenmaier 2011) and snow water equivalent (e.g., Mahanama et al. 2012). Impacts 
of the IHCs on hydrological forecasts can vary depending on geographical location and season 
(e.g., Li et al. 2009) and on how extreme the IHCs are (e.g., Wood et al. 2002). Improving the 
IHCs can potentially increase the skill of drought forecasts (e.g., Shukla et al. 2013).

Several studies have explored assimilating remotely sensed measurements, such as snow 
and soil moisture, into LSMs to improve hydrological forecast initial conditions (e.g., DeChant 
and Moradkhani 2011; Liu et al. 2015; Lin et al. 2016). However, one IHC state that is relatively 
unexplored in the context of drought and flood potential forecasts is terrestrial water storage 
(TWS), which is particularly relevant for the hydrological prediction of groundwater (Wanders 
et al. 2019), especially for large river basins (Yossef et al. 2013). Reager et al. (2014) demon-
strated the potential of using remotely sensed TWS estimates from NASA’s Gravity Recovery 
and Climate Experiment (GRACE) satellites for flood prediction in select U.S. river basins. 
Also, Lin et al. (2016) noted that assimilated GRACE TWS used as IHCs improved seasonal 
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temperature predictions in higher latitudes. Thus, assimilating GRACE TWS into state-of-
the-art LSMs with groundwater representation may also better capture initial groundwater 
conditions for forecasting drought conditions.

The Hydrological Forecast System
Background. Starting in 2015, scientists at NASA’s Goddard Space Flight Center (GSFC); 
University of California, Santa Barbara (UCSB); University of Maryland (UMD), The Johns 
Hopkins University (JHU); U.S. Geological Survey (USGS); U.S. Army Corps of Engineers 
(USACE); and other international partners have supported a NASA-funded project referred to 
as Forecasting for Africa and the Middle East (FAME). That project was aimed at developing 
the early warning system, NHyFAS, to support proactive drought management efforts that 
could help mitigate related socioeconomic losses (e.g., from decreased food production) in 
areas such as Africa. This new forecast system would help to build on the main FEWS NET 
hydrologic monitoring system, FLDAS (McNally et al. 2017), by incorporating additional 
LSMs, satellite-based observations, data assimilation methods, and seasonal-scale forecasts 
from NASA’s state-of-the-art seasonal forecast system [the Goddard Earth Observing System 
(GEOS) forecast system; Borovikov et al. 2019], which is a model member of the NMME sea-
sonal forecast suite. NHyFAS features several data assimilation-based methods and a variety 
of satellite-based observations (soil moisture and TWS) that can be used to improve the sys-
tem’s IHCs. The overall system enhances FEWS NET’s early warning capabilities by enabling 
regional experts to visualize the potential hydrologic impacts of forecasted precipitation. 
Components of the system also support other efforts, such as SERVIR’s West Africa LDAS and 
Hindu Kush–Himalaya subseasonal to seasonal forecast system.

Figure 1 describes the overall workflow of NHyFAS and illustrates the multiple seasonal 
forecast components supported, including bias-corrected and spatially downscaled (BCSD) 
seasonal forecasted meteorological variables from the GMAO’s GEOS model, ensemble stream-
flow prediction (ESP) forecast methods, and forecast initial conditions derived from historic 
and data assimilation–based simulations. This system utilizes satellite-based data along with 
well-known data assimilation methods, including the ensemble Kalman filter (EnKF) and the 
ensemble Kalman smoother (EnKS). New output fields are also provided by NHyFAS, including 

Fig. 1. Diagram highlighting the new hydrological forecast system elements, which include addi-
tional models, forecast features, data assimilation, and model outputs, helping to extend FLDAS 
monitoring support. Italicized words indicate newer features.
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TWS generated by the two additional LSMs and surface water storage (SWS) as generated by 
a comprehensive routing scheme. Finally, examples of the product maps that are generated 
and provided to the FEWS NET partners are highlighted in the final box.

NASA land surface modeling tools. NHyFAS expands upon the FLDAS modeling framework, 
which used two LSMs [Noah (Ek et al. 2003) and the Variable Infiltration Capacity model 
(Liang et al. 1994)] to derive 30+ years of historic records and near-real-time hydrological 
and drought-related products (McNally et al. 2017; McNally et al. 2019b). For NHyFAS, we 
utilize two additional LSMs, each of which has representative groundwater schemes: Noah 
with multiparameterizations (Noah-MP; Niu et al. 2011) and NASA’s Catchment LSM (CLSM; 
Koster et al. 2000). The overarching land modeling software framework is the Land Informa-
tion System (LIS; Kumar et al. 2006; Peters-Lidard et al. 2007), a flexible framework that can 
be customized by users for their needs but also expanded to meet growing needs. NHyFAS 
serves as an instance of LIS. LIS also includes several of the LSMs mentioned above plus many 
others; it thus allows multimodel ensemble and multiple data assimilation strategies to better 
address land surface conditions such as drought. The LIS framework includes a wide array of 
available inputs via the Land Data Toolkit (LDT; Arsenault et al. 2018), and it provides multiple 
evaluation and drought metrics via the Land Verification Toolkit (LVT; Kumar et al. 2012). LIS 
also supports river routing schemes such as the Hydrological Modeling and Analysis Platform 
(HyMAP; Getirana et al. 2012, 2017a).

Meteorological and seasonal forecast input datasets. The LSMs in NHyFAS are used to 
generate historic simulations that span almost 40 years. This 40-yr period of record is criti-
cal for drought assessments. These simulations, also referred to as the open-loop (OL), use 
precipitation inputs from UCSB/USGS CHIRPS, version 2.0 (CHIRPS; Funk et al. 2015), and 
other meteorological inputs from NASA’s Modern-Era Retrospective Analysis for Research 
and Applications, version 2 (MERRA-2; Bosilovich et al. 2016; Gelaro et al. 2017). Note that 
for monitoring and for producing forecast initial conditions, we use CHIRPS-prelim (Funk 
et al. 2015), since the reduced (3-day) latency of this product allows us to update the models 
closer to real time. The final CHIRPS product, at present, has about a 2-week latency. We use 
a 6-hourly CHIRPS product available from UCSB for the Africa continent domain. For the daily 
CHIRPS-prelim data, LDT is used to temporally downscale the daily data, making use of a 
dataset with higher temporal resolution (e.g., hourly MERRA-2 precipitation), as described 
in Arsenault et al. (2018). MERRA-2 data have about a 10-day latency, which is sufficient for 
seasonal climate forecast initialization and monitoring.

The meteorological forcing for the land models during the forecast period are derived from 
seasonal forecasts produced by the GMAO (Borovikov et al. 2019). We use these data since the 
GMAO system provides the full complement of required inputs (e.g., temperature, radiation, 
winds), whereas the NMME database only offers monthly precipitation and temperature. The 
GMAO seasonal forecasts consist of 10 ensemble members for real-time applications and vari-
ous ensemble sizes for the hindcast period. For NHyFAS, the forecasts are bias-corrected and 
spatially downscaled (BCSD) using the MERRA-2 reference height forcing fields and CHIRPS 
for the precipitation, following the method outlined in Wood et al. (2004). The modification 
of the forecasts via the BCSD method has been evaluated and verified across most of Africa 
for NHyFAS.

To benchmark the impact of the GMAO meteorological forecasts and to provide additional 
hydrological forecast ensembles, a simple ESP type approach (Twedt et al. 1977; Day 1985; 
Yuan et al. 2015) is supported in LIS, arising from a climatology-based forecast method (e.g., 
Li et al. 2009; Yossef et al. 2017). The skill of the hydrological ESP forecast is derived solely 
from the IHCs. LIS generates the ensemble of ESP forecast members by using individual years 

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:48 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U LY  2 0 2 0 E1013

from the historical MERRA-2 and CHIRPS meteorological data; thus, the 1982–2017 MERRA-2 
data holdings allow us to produce 36 ESP ensemble members for a given forecast year. The 
realistic IHCs are derived from the individual LSMs’ historic OL runs. NHyFAS-based real-time 
ESP forecasts are also generated for Africa as a whole.

Model setup and historical experiments. As in FLDAS, the CLSM and Noah-MP models used 
in NHyFAS were each spun up with two cycles of MERRA-2/CHIRPS forcing, with each cycle 
covering 1981–2016. We subsequently ran the land models for different Africa focus regions 
(e.g., southern Africa) and the entire continent at a 0.25° × 0.25° spatial resolution and 15-min 
model time step from 1981 to close to the present day.

Use of NASA satellite data for evaluation and assimilation. NASA’s wide array of satellite-
based products can be used to help evaluate the model forecasts in areas, like Africa, with 
limited surface observations. Also, assimilating such satellite data into the models prior to a 
forecast should improve IHCs and thus forecast skill. For NHyFAS, we use LIS’s data assimila-
tion framework that includes well-known assimilation methods (e.g., ensemble Kalman filter) 
to make optimal use of the satellite data.

For soil moisture data assimilation, LIS is able to assimilate several different soil moisture 
datasets, including NASA’s Soil Moisture Active Passive (SMAP) satellite products (Kumar et al. 
2019). SMAP has produced, since its launch in early 2015, estimates of surface soil moisture 
down to 5-cm depth at least once every 3 days (Entekhabi et al. 2014) and available within a 
few days of overpass time (O’Neill et al. 2018). SMAP also supports a range of applications, 
including drought monitoring (e.g., Mishra et al. 2017), crop growth (e.g., Sazib et al. 2018), 
and many other applications (Brown et al. 2013). Thus, as part of NHyFAS, we can assimilate 
SMAP data to enhance the modeling states and forecast initial conditions, using EnKF (e.g., 
Reichle et al. 2002; Kumar et al. 2019) and related bias correction methods (e.g., Reichle and 
Koster 2004).

LIS also supports the assimilation of TWS anomaly estimates from NASA’s twin-based 
GRACE satellite (which was decommissioned in late 2017) and, currently, the GRACE follow-
on (GRACE-FO) mission, which both measure changes in the gravity field largely related to 
variability and movement in land and water mass. Different groups, such as the University 
of Texas Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), generate 
different products, including the latest mass concentration, or mascon products (e.g., Save 
et al. 2016; Wiese et al. 2016), which provide better TWS signal and reduced errors relative 
to earlier spherical harmonics–based products (e.g., Rowlands et al. 2010; Save et al. 2012; 
Scanlon et al. 2016).

The only current monitoring system that includes TWS drought estimates is the U.S. Drought 
Monitor (USDM) through the assimilation of GRACE TWS measurements into NASA’s CLSM 
(Houborg et al. 2012). For NHyFAS, we assimilate GRACE TWS with a focus on the African 
continent and on forecast initial conditions, using the EnKS method described in Zaitchik 
et al. (2008) and Kumar et al. (2016).

End-to-end system description. The end-to-end system of NHyFAS is depicted in the Fig. 2 
flow diagram. The model parameters, initial conditions, and satellite-based observational 
data processing are supported by LDT. Using LIS, the LSMs, along with the HyMAP routing 
scheme, are driven offline (not coupled to an atmospheric model) by observed and modeled 
atmospheric fields to produce the long-term, historic OL simulations (from 1981 to the pres-
ent). The OL simulations are then used to initialize the data assimilation (DA) and forecast 
simulations. Also, the OL simulations are used as the basis for calculating hydrological 
extreme metrics, for example, soil moisture percentiles for agricultural drought. Satellite 

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:48 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U LY  2 0 2 0 E1014

datasets such as GRACE TWS are assimilated via LIS to produce a blended analysis, one that 
should improve over the model or observations alone. These simulations are then processed 
to initialize the offline LSM forecast runs. A set of scripts is used to perform the BCSD step on 
the GCM-based meteorological forecasts, which are then ingested by LIS. The ESP forecasts 
are directly generated by LIS through the application of the MERRA2 and CHIRPS historical 
meteorological forcing datasets.

The LSMs in LIS produce estimates of terrestrial water and energy budget terms, including 
water fluxes (e.g., evapotranspiration, or ET) and storage (e.g., soil moisture). HyMAP pro-
duces streamflow, surface water extent, and storage in both rivers and floodplains, as well 
as several other stream-based dynamics and storage terms. LVT and other scripts use these 
output fields to generate different drought metrics, including SPI (McKee et al. 1993), soil 
moisture percentiles, and hydrological indices such as standardized runoff index (SRI; Shukla 
and Wood 2008). LVT also evaluates NHyFAS products against independent datasets (e.g., 
in situ soil moisture, satellite datasets) and produces various skill metrics (e.g., anomaly 
correlations, root-mean-square error).

Results and skill assessment
Capturing agricultural and hydrological drought events using TWS. CLSM and Noah-MP 
can capture changes in the various components of TWS, including groundwater, the soil 
moisture profile, snow, canopy water, and surface water storage (Getirana et al. 2017b). Of 
particular relevance to drought monitoring and forecasting is the fact that deeper moisture 
(e.g., groundwater) tends to show more persistence than soil moisture nearer the surface (e.g., 
Geruo et al. 2017), which reflects the slow-moving nature of agricultural drought.

To see how well the models recreate the overall spatiotemporal variability of past drought 
events in terms of TWS, we combined the two models’ TWS fields and determined the areas 
in southern Africa for which the simulated TWS (for November–March, 1982/83–2015/16) 
exceeded different drought severity thresholds. Figure 3 presents the time series of monthly 
areal percentages for five TWS drought percentile categories and for six different southern 

Fig. 2. The main NHyFAS flowchart of system components and data inputs. Yellow-highlighted 
boxes indicate the inputs to the various parts of the system, and the purple-highlighted boxes 
represent the different system components and outputs derived.
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Africa countries (highlighted in the map in the lower left of the figure), along with the results 
for the full domain. Several drought periods, including several confirmed extreme events 
(e.g., 1982–83, 1994–95, 2004–05, and the more recent 2015–16 event; Pomposi et al. 2018), 
stand out clearly in the simulation results. The 1991–92 and 1994–95 drought events suggest 
severe dry conditions in the groundwater and soil moisture storage terms, with almost 60% 
to 80% of Zambia, Malawi, Mozambique, and Zimbabwe under the most extreme category of 
drought (e.g., Rouault and Richard 2005; Masih et al. 2014).

Skill of seasonal hydrological forecasts and contributions of initial conditions. Since few 
datasets are available in most African regions to evaluate NHyFAS forecasts, output from the 
OL historic runs are used as “truth,” following the approach used in previous studies (e.g., 
Mo et al. 2012; Sheffield et al. 2014; Yuan et al. 2015). Additional validation data are derived 
from independent satellite-based products (e.g., SMAP soil moisture or satellite-based veg-
etation index products, like NDVI) as well as from available in situ streamflow observations.

Figure 4 presents the drought prediction skill of NHyFAS in relation to ESP and randomized 
forecasts. Following the models’ drought detection ability highlighted in Fig. 3, the verification 
target is the percentage of area in different years (from the OL runs) for which TWS lies below 
two severity thresholds: the 5th and 20th percentiles of TWS (Figs. 4b,d and 4a,c, respectively). 
Forecast skill is measured as the RMSE of the forecasted percentage of area (for the combined 
Noah-MP and CLSM models) under the given level of drought severity. All forecasts were initial-
ized on 1 November with states from the OL runs. The randomized forecasts are derived from 

Fig. 3. Time series of percentages of area for each TWS drought percentile category and for each labeled 
country in southern Africa. Combined CLSM and Noah-MP based TWS are provided for different drought 
severity thresholds (e.g., 10th percentile) for November–March of each year from 1982 /83 to 2015/16. 
Major drought years are highlighted with thin black boxes, and they include 1982–83, 1991–92, 1994–95, 
2001–03, 2004–05, and 2015–16.
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reshuffled open-loop run data, 
using a Monte Carlo resampling 
approach.

The results are presented in 
such a way as to isolate, through 
differencing, the contributions 
of the initial conditions and 
the meteorological forecasts to 
the obtained skill. The top row 
effectively shows the impact 
of the initial conditions (Figs. 
4a,b)—it shows the RMSE of 
the ESP hydrological forecasts, 
which derive skill solely from 
the initialized states, minus that 
associated with completely ran-
domized forecasts (i.e., forecasts 
with zero skill, by construction). 
Red coloring indicates that skill 
is indeed obtained from the 
IHCs. For many regions, this 
skill improvement is shown 
to extend several months into 
the forecast. It must be kept in 
mind, however, that results in 
the top row may partially reflect 
the use of the OL runs as the 
validation data, given that the 
OL runs and the forecasts were 
produced using the same land 
surface models.

The bottom row (Figs. 4c,d), which shows the RMSE of the full NHyFAS forecasts minus 
that of the ESP forecasts, isolates the skill derived from the meteorological forecasts (in this 
analysis, using version 1 of the GEOS system) and is accordingly more objective. Overall, 
the positive differences greatly outweigh the negative ones, indicating that the meteorologi-
cal forecasts do provide true skill at seasonal leads, especially indicated for Botswana and 
Zambia (note the different color bar scale relative to the top row). The contributions from the 
meteorological forecasts are often larger later in the forecasts, that is, at a lead of 3–5 months. 
These results also help identify some sources of uncertainty in the system, related to the initial 
conditions (top row) and meteorological forcing (bottom row). Other uncertainty can relate to 
the model parameters and physics (not explored in this case).

The skill and performance of the NHyFAS forecasts are also evaluated with other metrics, 
including ranked correlation (Rrank) and equitable threat score (ETS). Figure 5 presents, for 
the first 5 months of both the bias-corrected GEOS (version 1) and ESP forecast runs initial-
ized on 1 November, the correlation skill (Fig. 5a) and ETS (Fig. 5b) for the lowest tercile or 
below-normal events (<33rd percentile) for total-column soil moisture. The evaluated hindcast 
years cover the period 1982–2016. The correlation is calculated between the ensemble mean 
of the forecast anomaly and the corresponding OL field. The ETS metric is the fraction of 
“hits” occurring for a given event category (again, with the OL data representing truth) after 
adjusting for the number of hits that would be expected to occur simply by random chance 

Fig. 4. Differences in RMSE for forecasting percentage area in drought 
(a),(b) between ESP and randomized forecasts and (c),(d) between the 
GEOS and ESP forecasts are shown for two drought severity thresholds: 
(a),(c) 20th and (b),(d) 5th percentiles of TWS. The TWS (for the combined 
Noah-MP and CLSM) forecasted percentage of area is presented for the 
different countries in southern Africa and over different lead months for 
the 1 Nov forecast. Red shows improvement over ESP, and blue shows 
degradation of skill relative to ESP.
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(Shukla et al. 2019). Correlation and ETS values are higher for the bias-corrected GEOS forecasts 
in the first lead month (November) and again in lead months 3 and 4 (February and March), 
which may reflect the ability of GEOS to capture teleconnection influences on meteorological 
forcing, such as from El Niño–Southern Oscillation (ENSO; Borovikov et al. 2017). Also, overall 
averaged skill values are shown in the lower-right corner of each panel.

Figure 6 shows the spatially averaged skill (correlation and ETS) at lead 0–5 months for 
forecasts initialized on 1 March, 1 July, and 1 November, over the Africa entire domain (after 
screening for climatologically dry regions as in Fig. 5). The results show that the useful level 
of skill (>0.25 correlation and 0.1 ETS) exists through lead 3 months. The skill also tends to 
dissipate sharply after the first month, which highlights the need of at least monthly updates 
of these forecasts for informing decision-makers.

NHyFAS forecasts also have the potential to provide flood risk early warning. Figure 7 
shows results for an extreme rainy period that resulted in several major floods throughout East 
Africa from March to May of 2018, causing loss of crops, displacement of several thousands 
of persons, and numerous casualties, especially in Kenya and southern Somalia. Shown on 

Fig. 5. Comparison of the bias-corrected GEOS with the ESP for 1 November initialized forecasts 
involving the two LSMs. Skill is shown in terms of (a) ranked correlation and (b) ETS for below-
normal events (<33rd percentile), with respect to the OL historic simulations. Areas that receive 
less than 50 mm of total precipitation during the first three months of the season are masked out 
(shaded in gray) to allow us to focus mainly on the rainy season of the forecast period. Overall 
averaged skill values are shown in the lower-right corner of each panel.
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Fig. 6. Spatially averaged skill at lead 0–5 months for forecasts initialized 
on 1 March, 1 July, and 1 November, over the entire Africa domain (after 
screening for climatologically dry regions as in Fig. 5). (top left) Correlation, 
(bottom left) the ETS lower tercile, and (bottom right) ETS upper tercile of 
the GEOS-based forecasts are calculated against the OL as reference.

Fig. 7. The East African rainy season from March to May of 2018 experienced several flooding events, 
especially in Kenya and southern Somalia. The top-layer soil moisture anomalies from the Noah-MP GEOS-V2 
forecast lead months, initialized on (first column) 1 March and (second column) 1 April , are compared against 
(third column) the monthly Noah-MP SMAP DA soil moisture (SM) anomalies and (fourth column) the eMODIS 
NDVI anomaly estimates from the subsequent month’s first 10 days (or dekad). The GEOS forecasts are 
initialized with SMAP DA soil moisture states. All anomaly panels are calculated and shown as the anomaly 
relative to the median, based on the period 2003–17 due to availability of the eMODIS NDVI product.
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the left are monthly anomalies (relative to 2003–17 median) of the top-layer soil moisture 
from NHyFAS forecasts, initialized on 1 March (first column) and on 1 April (second column). 
These particular forecasts used the Noah-MP model with SMAP data built into the IHCs 
through data assimilation. These forecast results are compared against the corresponding 
(nonforecast) Noah-MP results produced with SMAP data assimilation (third column) and 
against eMODIS NDVI (Swets et al. 1999) anomaly estimates (fourth column), which represent 
the subsequent month’s first 10 days, to account for the time lag of vegetation growth relative 
to changes in soil moisture (e.g., Bolten and Crow 2012). The two forecasts capture much of 
the region’s anomalous wet conditions over parts of Kenya and Ethiopia for April and into 
May. The drier conditions seen during May over northern Ethiopia with either forecast start 
date are also seen in the verification panels (third and fourth columns). This example shows 
that the forecast information could have provided advanced warning of higher-than-normal 
soil moisture conditions (and also higher-than-normal surface runoff conditions, not shown) 
in parts of East Africa, as well as the drying trends over northern Ethiopia by at least 1 lead 
month. Similar lead time skill was reported by Shukla et al. (2019) for this region and season 
in their seasonal forecast skill assessment.

Data assimilation in NHyFAS has the potential to improve forecasts. GRACE TWS assimila-
tion has been shown to improve overall groundwater storages and drought metrics (e.g., Kumar 
et al. 2016; Li et al. 2019), especially in areas with high interannual precipitation variability. 
Earlier studies have shown how TWS, with its high persistence, can contribute to, for example, 
streamflow forecasts (Yossef et al. 2013; Reager et al. 2014; Getirana et al. 2020). The example in 
Fig. 8 highlights the impact of assimilated GRACE TWS on the forecast of the 2004–05 drought 
event in southern Africa. The top row in the figure shows CLSM with assimilation of GRACE 
TWS data (GRACE DA), showing drought conditions over this region. The middle row shows 

Fig. 8. TWS anomaly comparison is shown for the 2005 southern Africa drought for (top) the CLSM-based GRACE DA 
simulation with (middle) the GEOS hydrological forecasts, initialized with the GRACE DA hydrological state conditions on 
1 January 2005. (bottom) The ensemble spread (difference between maximum and minimum ensemble members) of the 
GEOS-based TWS forecasts (from the middle row) for each lead month. The anomalies are calculated from a 2003–16 mean.
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results from NHyFAS forecasts initialized on 1 January 2005, using the initial conditions taken 
from the GRACE DA simulation. The bottom row highlights the ensemble spread (differences 
in the maximum and minimum of the forecast ensemble members) for each lead month of the 
middle row. The TWS anomalies are calculated from a 2003–16 mean, which encompasses 
the main GRACE satellite data record. The GRACE DA–based initialization retains the TWS 
drought conditions over Angola and Zambia into March (lead month 2). The assimilation of 
the GRACE TWS anomaly data impacts the deeper soil moisture reservoir, and the anomaly 
is able to persist in the forecast period.

Operational application of drought and flood potential forecasts to support USAID’s 
Famine Early Warning Systems Network Team
Effective humanitarian responses are typically motivated by staged alerts before, during, and 
after a growing season (Funk et al. 2019). This allows time to plan and implement effective 
assistance. FEWS NET’s monthly food security outlook (FSO; Magadzire et al. 2017) process 
brings together African, Central American, and U.S. scientists who routinely monitor large-
scale climate conditions and forecasts as well as on-the-ground conditions. On a monthly 
basis, the FSO process involves reviewing and revising a set of agroclimatological working 
assumptions that are used by FEWS NET food security analysts to develop scenarios of crop 
production and food insecurity for current and upcoming seasons (Magadzire et al. 2017; Funk 
et al. 2019). A team of FEWS NET regional scientists then use the monitoring and forecast 
products to comprehensively evaluate the statements about most likely seasonal precipitation 
performance. The team provides support using a convergence of evidence approach that incor-
porates precipitation forecasts ranging from several days to 8 months lead time, current state 
of conditions, and their working local knowledge of the regions. After a technical discussion, 
a summary and final revised assumptions are presented back to the food security analysts.

To help support the monthly FSO process, NHyFAS has been set up to target the needs and 
product delivery timeframe for FEWS NET regional scientists, providing forecasts prior to the 
time they review the agroclimatology assumptions. These hydrologic forecasts aid the current 
movement toward more detailed assumptions for crop and rangeland performance associ-
ated with recent and forecast weather conditions. We have routinely delivered hydrological 
forecasts that show agricultural drought and extreme moisture states, such as soil moisture 
percentiles and anomalies ahead of the monthly forecast review meetings. Figure 9a shows 
an example from the routine NHyFAS root-zone soil moisture percentile product, with July 
initial conditions (top-left plot) and combined Noah-MP+CLSM soil moisture seasonal fore-
casts (20 members in total, 10 for each model) for 1 August 2018 forecast. Regional plots are 
also provided for the primary African FEWS NET regions. The routine forecast products can 
be found at https://lis.gsfc.nasa.gov/projects/nhyfas. Probabilistic forecast maps have also been 
generated to include additional forecast types, like ESP, to isolate the forecast skill stemming 
from the initial conditions.

The FEWS NET regional scientists have been using the seasonal hydrological forecasts since 
August 2018. Figure 9b showcases a real example wherein FEWS NET’s East Africa FSO science 
team utilized the September 2018 hydrological forecast to confirm other precipitation-based 
forecasts (left panel) and the FLDAS monitor’s soil moisture rank conditions from August (right 
panel), which showed preexisting wet soil conditions that contributed to an elevated flood 
risk in Sudan. This information was used to update one of the agroclimatology assumptions 
for the region, which was then provided to the food analysts.

For this FEWS NET FSO process, NHyFAS provides a new operational resource for poten-
tial hydrologic and agricultural impact assessment. Since it merges recent precipitation and 
hydrological forecasts, it is uniquely suited for midseason outlooks for hydrologic drought 
as well as more positive outcomes, such as if sufficient soil moisture conditions are likely 
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to persist and support normal or good crop production (Shukla et al., 2020). Furthermore, 
NHyFAS can directly assimilate GRACE TWS and SMAP soil moisture data, completely new 
sources of information for FEWS NET. Its modeling framework provides objective predictions 
of water supply and availability—outputs that can be directly validated and used in many 

Fig. 9. (a) Example of routine NASA seasonal hydrologic forecast root-zone soil moisture percentile prod-
uct, with (top left) July initial conditions and combined Noah-MP + CLSM soil moisture GEOS-V2 seasonal 
forecasts (20 members in total, 10 for each model) for the August 2018 forecast. (b) Real example case 
where FEWS NET regional scientists utilized the September forecast month to confirm other precipitation-
based forecast and preexisting wet soil conditions, contributing to an elevated flood risk in Sudan.
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applications and models, such as those used for estimating crop production, water stress, 
and water storage for hydropower. Continued synergy between FEWS NET partners and in-
ternational collaborators will continue to explore these applications and how NHyFAS may 
augment existing resources for policy-makers in the region.

Summary and future directions
As the need for improved monitoring and prediction of water and food insecurity risks grows, 
the demands for more enhanced data networks and modeling systems to support these needs 
also grow. Unfortunately, such development is made challenging by the fact that available data 
networks are in decline in several regions of the world, especially in Africa and the Middle East.

To help address these needs, NASA over the years has provided several satellite- and 
model-based monitoring and forecast products that are available in near–real time over ar-
eas with little data availability. Here we describe a new operational early warning drought 
and hydrological system that utilizes several of these NASA modeling and data capabilities. 
Integrated into a full end-to-end system, this seasonal hydrological forecast system, NHyFAS, 
has been designed to support the early warning efforts through its provision of hydrologi-
cal and agricultural drought monitoring and forecasts for USAID’s FEWS NET and partners. 
NHyFAS provides FEWS NET regional scientists with important new information to help them 
better respond to food and water security outlooks and needs, and in turn the regional sci-
entists provide feedback that can help improve NHyFAS. Different examples of the system’s 
application in Africa were provided here to demonstrate its ability to detect and forecast 
major hydrological extremes. Different skill metrics show how well the system performs at 
different lead months for parts of southern Africa, especially when compared to benchmark 
forecasts, like ensemble streamflow prediction, and different drought periods. Also, example 
use cases were presented that demonstrated the system’s ability for flood potential prediction 
in Eastern Africa and drought in southern Africa. NHyFAS products have been demonstrated 
as well to effectively support food insecurity early warning in the southern Africa region 
(Shukla et al., 2020).

Future plans for the system include the use of meteorological forecasts from additional sea-
sonal forecasting systems, such as including other NMME forecast models. The current suite 
of LSMs can be expanded to take further advantage of the benefits of multimodel analyses. 
Also, NHyFAS can include more routine assimilation of the different satellite-based products, 
like SMAP soil moisture, and the latest GRACE follow-on TWS products. Currently, NHyFAS 
makes precipitation and soil moisture–based forecast products routinely available to the 
community; it has plans, however, to also provide additional products, such as streamflow, 
TWS, ET, and other diagnostics useful to end-users (e.g., water stress indices). These, along 
with other drought and flood-based products, will continue to provide support for USAID’s 
FEWS NET as well as for other ongoing early warning systems and agencies’ needs.
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